CS 242, Section 002 | Sonoma State University | Fall, 2021 |
Discrete Structures for Computer Science
|
||
Instructor: Henry M. Walker
Lecturer, Sonoma State University |
Notes:
CS 242, Discrete Structures in Computer Science, can be described formally, strategically, informally, and practically.
Formal Description From the Sonoma State University Catalog:
This course covers fundamental mathematical concepts blended with their applications in Computer Science. Topics include: sets, functions and relations, Boolean algebra, normal forms., Karnaugh map and other minimization techniques, predicate logic, formal and informal proof techniques, relational algebra, basic counting techniques, recurrence relations, and an introduction to graph theory.
Strategic Course Description:
Many topics within computing utilize foundational concepts that draw heavily from the mathematical sciences. Although this material could be scattered throughout the curriculum, such an approach invites duplication, as later courses could not assume this basic material and thus would have to repeat it. Strategically, this course explores many of these pieces, so that later courses can move forward efficiently and without extensive duplication. In particular, the prerequisite structure of Computer Science Courses at Sonoma State University shows that CSC 242 serves as a direct prerequisite for 3 core CS courses and for 11 subsequent CS courses. Altogether, material covered in CSC 242 provides a foundation for approximately 14 later courses.
Informal Course Description:
Mathematical concepts, models, structures, skills, and techniques pervade many topics within computer science. Although far from complete, this table with a partial topic list highlights several important mathematical topics and identifies a few of the many application areas within computer science where these topics arise. Due to time and logistical constraints, CS 242 can introduce only the first nine of the topics listed. For those interested in pursuing selected sub-areas within computing, additional mathematics courses may be needed, as identified in the last several rows of the table.
Practical Course Description
CS 242 is a prerequisite for many Computer Science Courses at Sonoma State University, because many topics within later courses depend upon material related to "discrete structures." Simply stated, discrete structures provide a foundation that subdisciplines throughout computer science are built upon, so students are required to master material in CS 242 before enrolling in upper-level computer science courses.
Basic SSU Policy for in-person Classes
"It is the responsibility of all SSU community members to adhere to Covid safety protocols. My expectation is that you carefully read all sections of the Sonoma State Covid-19 information page. Before leaving your residence or coming to campus, you are required to complete the daily wellness screening. I expect you to have completed this screening and receive a green indicator such that you are cleared to come to campus prior to coming to class. If you are unable to come to class because you have not been cleared or if you are experiencing COVID-related symptoms, I can work with you so that you can make up the missed class sessions and/or assignments. When we are in class, we are required to wear masks at all times. If you forget to bring a mask you may obtain one at Seawolf Services, the University Library, or the Student Center. Thank you so much for helping to keep the members of our class safe."
SSU Policy on Food and Drink in the Classroom
"Eating in classrooms is not permitted during the fall 2021 semester. The University allows temporarily lifting or removing masks to drink."
Use of Masks and Social Distancing During Class
Office: Darwin 116C
E-mail: henry.walker@sonoma.edu and
walker@cs.grinnell.edu
Office hours are available most weekdays, unless announced otherwise in class.
Monday, Friday: | 11:30 am – 12:45 pm via Zoom (URL available on CS 242.002 Home Page on Canvas) |
---|---|
Tuesday: | 11:30 am – 12:45 pm in person (location Sal 1035) |
Wednesday: | 11:15 am – 11:55 pm via Zoom (URL available on CS 242.002 Home Page on Canvas) |
Thursday: | 11:30 am – 12:15 pm in person (location Sal 1035) |
During office hours, I will try accommodate all students who want to talk with me, largely following a first-come, first-served strategy.
Textbook: Kenneth H. Rosen, Discrete Mathematics and Its Applications, Eighth Edition, McGraw Hill Education, 2019, ISBN10: 1-259-67651X, ISBN13 978-1-259-67651-2
Additional Resource: Jerrold W. Grossman and Daniel R. Jordan, Student's Solution Guide for "Discrete Mathematics and Its Applications, Eighth Edition" by Kenneth H. Rosen, McGraw Hill Education, 2019, ISBN10: 1-259-73169-3 ISBN13: 978-1-259-73169-3.
While the schedule for this course is expected to evolve, a detailed Tentative Class Schedule is posted with readings, labs, assignments, examples, etc. This schedule will be updated as the course evolves.
For variety, this course will utilize a reasonably wide range of in-class activities. In general, each class session will involve
Over the semester, some additional class time may involve
The organization of individual classes likely will evolve through the semester. This table illustrates a sample class format.
This course incorporates a variety of activities, including class preparation (reading), labs and projects (started in class and finished for homework), and supplemental problems (some required and some available for extra credit), as well as quizzes, tests, and a final exam. From past experience, the time required for these activities will likely vary substantially from student to student and from one part of the course to another. For example, a student may need to devote considerable time and effort when starting a new or different topic, but the workload may drop noticeably when that material is mastered.
Such variation in student experiences complicates any estimation of the time individual students may need to devote to homework for this course. However, from past experience, students working steadily on the course likely should expect to allocate 10-15 hours per week to homework. Some students may require additional time for some weeks; some students may complete work in less time for some weeks. Conversations with computer science faculty and others suggest this time allocation is consistent with expectations for many courses at Grinnell College and Sonoma State University.
Course Work will involve a combination of the following activities.
Weekly Assignments (identified, with links, on the Tentative Class Schedule) are designed to provide practice on topics covered in class and the textbook and to extend work with selected topics. Problems from the textbook may be supplemented by additional written or programming exercises. These assignments will be divided into two parts:
Suggested Problems: The study of discrete structures
should be an active endeavor, not a passive one. Thus, several
exercises will be suggested in each assignment, but these will not
be collected. Each class will begin by discussing difficulties
arising from these suggested problems. You should consider working
these problems as a minimum, and you should do more problems if you
have trouble with these.
Note: As an incentive for your working on these problems,
at least half of the problems on quizzes, tests, and the exam will be
taken from these suggested problems (although modest editing is possible).
Required Problems: Beyond the Suggested Problems,
approximately 10 problems will be assigned to be turned in before
class most weeks (usually on Thursdays). As discussed under
"Deadlines" (below), a penalty of 30% per class meeting will be
applied for papers turned in after the start of a class. Papers
over two weeks will not be accepted. Also, no work will be accepted
after 4:00 pm on Thursday, December 2.
Collaboration with 1 or 2 partners is required in working on
Required Problems, and I will assign new partners for every problem
set. When collaborating, the names of both partners
should be indicated at the top of the assignment, and only one
completed assignment submitted.
In-class Quizzes: A 30-45 minute quiz will be scheduled on Tuesday every other week, except when Tests are scheduled. Altogether about 5 quizzes are scheduled during the semester; in grading, the lowest quiz score will be dropped. These quizzes will focus on basic topics covered recently, but prior to the previous class session.
Tests: Two in-class tests are scheduled for Tuesday, September 28, and Tuesday, October 26. These tests will focus on the previous 4-6 weeks of the semester, although some earlier material may be covered.
Exam: A final exam will be given during Exam week, on Tuesday, December 7, at 1:00 pm, following the University's Final Examination schedule. This exam will be cumulative—including material from throughout the semester.
Deadlines are shown on the Tentative Class Schedule, and work is due at the start of each class specified. A penalty of 30% per class meeting will be assessed for any assignment turned in late, even work submitted at the end of a class.
Although dates for assignments, quizzes, tests, and the final exam are firm, I understand that circumstances arise when you are not able to attend class.
When circumstances are known ahead of time (e.g., academic activities, athletic events), I expect you to make arrangements with me before the activity occurs. Normally, we will identify an alternative date for the due date, quiz, or test.
When circumstances cannot be reasonably anticipated (e.g., illness, family emergencies), I expect you to notify me as soon as is reasonably possible. (Email is fine.) In the case of medical problems, I expect a written note from a medical professional or counselor that indicates that your health interfered with the course activity. (I do not need to know any details of the medical problem, but I do need to know that you sought help and that the medical professional believed meeting the deadline would likely interfere with your health.)
Absolute Deadline: All homework must be turned in by Thursday,
December 2, at 4:00 pm;
assignments received after
that time will not be counted in the grading of the course.
Written [weekly] assignments:
Collaboration is required on written assignments, and I will
assign new partners (in groups of 2 or 3) each week.
Please contact me via email, if there are a few students with whom you prefer NOT to work with (I don't need or want to know a reason.) Any preferences shared with me will remain confidential.
All work on these assignments must follow university-wide rules for quotation and citation. For example, every written source and any discussions with others outside a partnership must be carefully cited.
Quizzes, tests, and the final exam: All in-class quizzes, tests, and the final exam are closed book and closed notes, and collaboration is not allowed. Students may ask questions of the instructor, but communication with any other person is not allowed.
Other Graded Work: Should other work be assigned during this class, rules regarding collaboration and citation will be included as part of the activity.
Procedures: Throughout the course, For example, any hint of academic dishonesty will be investigated and handled following the SSU Policies on Cheating and plagiarism.
Cell phones, text-messaging devices, and other social-networking connections may not be used in this class. If you bring such equipment to the classroom, it must be turned off before the class starts and stay off throughout the class period. Use of such equipment is distracting to those nearby and will not be tolerated.
If you are a student with a disability and think you may need academic accommodations, please contact Disability Services for Students (DSS) located in Schulz 1014A. Please contact DSS as early as possible in order to avoid a delay in receiving accommodation services. The use of DSS services, including testing accommodations, requires prior authorization by DSS in compliance with university policies and procedures. See SSU's policy on Disability Access for Students.
If you feel stressed or otherwise worried about your circumstances, you are encouraged to contact SSU's Counseling and Psychological Services. In summary, CAPS offers short-term individual and group counseling, workshops, crisis intervention services, consultation, referral, training, and outreach.
This instructor's grading philosophy dictates that the final grade should ultimately be based upon each student's demonstration of her or his understanding of the material, not on the performance of the class as a whole nor on a strict percentile basis. The following scheme is proposed as a base for how the various assignments and tests will be counted in the final grade.
Assignments: 36% | Quizzes: 20% (5% each quiz–lowest quiz dropped) | Tests: 24% (12% each test) | Exam: 20% |
create June 24, 2021 revised Summer 2021 |
|
For more information, please contact Henry M. Walker at walker@cs.grinnell.edu. |