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Theorem: Let S be a set with n elements.
Then S has 2n subsets.

Proof 1:

Let P (S) be the set of all subsets of S, and let H be the set of n-character strings of 0’s and 1’s.
Order the elements of S as s1, s2, . . . sn.

Define function f : P (S)→H as follows:
For Q ∈ P (S), let f(Q) = r1r2 . . . rn where ri is 1 if si ∈Q and 0 otherwise.

f is clearly 1-1 and onto (i.e., f is a bijection), and the theorem follows.

Proof 2: Order the elements of S as s1, s2, . . . sn, and let P (S) be the set of all subsets of S.
Let H represent the binary numbers between 0 and 2n − 1. Since all numbers in this range may be
represented by n binary digits, H includes n-digit sequences

000 . . .00 (n 0’s),
000 . . .01 (n− 1 0’s followed by a 1),
. . . ,
111 . . .11 (n 1’s).

Each element Q in P (S) is a subset of S contains zero or more elements of S, and one can determine
whether each si is in Q for i = 1,2, . . . n.

Define function f : P (S)→H as follows:
For Q ∈ P (S), let f(Q) = r1r2 . . . rn, where ri is the digit 1 if si ∈ S and 0 otherwise, for

i = 1,2, . . . n.

Claim: f is 1-1 and onto (i.e., f is a bijection)
Proof of Claim:
1-1: For subsets X1 and X2 of S, f(X1) and f(X2) will differ in each digit for which an element in one
subset is not also in the other. Thus, X1 6=X2 =⇒ f(X1) 6= f(X2)
onto: Given an n-digit binary number b (i.e., a number in H , let X be the subset of S which contains
element si if and only if the ith digit of b is 1. Then f(S) = b.

Since f is 1-1 and onto, each subset of S is paired with a number in H . Since elements of H provide a
count (in binary) of numbers from 0 to 2n − 1, H has size sn, and P (S) also must have size sn.



Proof 3: Let P (S) be the set of all subsets of S.
We construct a mechanism (called a function) to count the elements of P (S).

Step 1: We examine the binary numbers from 0 through 2n − 1.
Discussion of Step 1: In binary notation, the digits represent powers of 2. For k + 1 digits, the bits
represent the powers 2k,2k−1,2k−2, . . .21,20. Thus, the number 1, followed by k 0’s (i.e., 1000 . . .000)
represents the number 2k. Subtracting 1 from this number in binary yields 111 . . .111 (k 1’s) or 2k − 1.
Turning to the theorem at hand, the number 2n is represented in binary by n 1s.

If we count in binary, therefore, the numbers 0 through 2n − 1 may be represented as 0, 1, 10, 11, . . . , n
1s. If we add leading 0s to these numbers as needed, so that each number from 0 through 2n − 1 is written
using n bits, the resulting sequence becomes:

000 . . .00 (n 0’s),
000 . . .01 (n− 1 0’s followed by a 1),
000 . . .10 (n− 2 0’s followed by a 10),
000 . . .11 (n− 2 0’s followed by a 11),
. . . ,
111 . . .11 (n 1’s).

For future reference, define the set H to be this collection of binary numbers between 0 and 2n.

Step 2: We consider a representation of the elements of S.
Discussion of Step 2: Since S is a given set of n elements, we may fix an order for these elements, and
then label the elements as the sequence s1, s2, . . . sn

Step 3: We develop a mechanism to count all subsets of P (S).
Discussion of Step 3: We define a function g : H → P (S) as a mechanism to count all elements in
P (S).

Let b be a binary integer between 0 and 2n., and let b1b2 . . . bn be its binary expansion in the set H .

Define function g : h→ P (S) by g(b) = {si | bi = 1} for i = 1, . . . n.

With this definition, g is well defined, since each bit in a binary integer b corresponds unambiguously to an
element of S, and reading along the bits of b indicates exactly what subset will correspond to g(b).

To show g is 1-1, consider two binary numbers h1 and h2 in H , and suppose g(h1) = g(h2). Let T =
g(h1) = g(h2), For each i between 1 and n,

if si ∈ T , then the ith bit of both h1 and h2 must be 1, by the definition of g.
if si 6∈ T , then the ith bit of both h1 and h2 must be 0, by the definition of g.

Putting these bits together, g(h1) = g(h2) requires that every bit of h1 is the same as the corresponding
bit of h2, and it follows that h1 = h2.

To show g is onto, consider a subset R of S. From R, construct a binary integer b with bits b1b2 . . . bn as
follows:

For i = 1 to n, let bi = 1 if si ∈ R and let bi = 0 otherwise.

By the construction and definition of g, g(b) = R, so g is onto.

Step 4: The Theorem follows by counting.
Discussion of Step 4: Altogether, function g provides a 1-1 correspondence between the numbers 0 and
2n − 1, effectively providing a mechanism that uses these integers to count each subset of S exactly once.



Proof 4: Suppose set S has n elements.
If n = 0, then S is the empty set, and its only subset is itself.

If n > 0, pick an element s ∈ S, and let U be the set S with the element s removed. Since U has n − 1
elements, the power set P (U) of U contains 2n−1 subsets. Also, let P ∗(U) consist of all subsets in P (U)
with the element s added.

Since P (S) = P (U)
⋃
P ∗(U), P (U) and P ∗(U) are disjoint, and P (U) and P ∗(U) each have 2n−1

elements, it follows that P (S) has 2n elements.

Proof 5: Suppose set S has n elements.
The proof proceeds by mathematical induction on n with the following induction hypothesis:

IH(n): If S is any set with n elements, then it has exactly 2n subsets.

Base case (n = 0): If n = 0, then S is the empty set. The only subset of the empty set is the empty set
itself, so there are exactly 1 = 20 subsets, as required by IH(0).

Induction case (n > 0): Assume the Induction Hypothesis IH(k) for integers k < n; the following
argument shows that IH(n) is true as well.

Since n > 0, the set S has at least one element. Pick s as one such element, and consider the set U obtained
by removing the element s from S, sometimes written U = S − {s}.

Since one element has been removed from S, U has n− 1 elements, the Induction Hypothesis IH(n− 1)
applies to U , and U has 2n−1 subsets. Label this collection of 2n−1 subsets as W .

Next, form a new collection N of sets by adding the element s to each subset in W . Since each element of
W is a subset of S and since s is an element of S, each element of N is also a subset of S.

Now, suppose A and B are two distinct elements of W ; that is, A and B are distinct subsets of U = S−{s}.
Since A and B are distinct, there is at least one element in A that is not in B or one element in B that is
not in A. That is, A and B differ by some element q ∈ U . Since neither A or B contain s, q 6= s, so q
remains a difference between A

⋃
{s} and B

⋃
{s}. Altogether, this shows that the number of elements in

N is the same as the number of elements in W , namely 2n−1.

In addition, no element in W is also in N , since all elements in W do not contain s, while all elements of
do contain s. As W and N are disjoint, the number of elements in W

⋃
N is 2n−1+2n−1 = 2n. Since all

elements of W
⋃
N are subsets of S, the number of subsets of S must be at least 2n.

Finally, every subset V of S either contains s or it does not.

If V does not contain s, then V ∈W ∈W
⋃
N .

If V does contain s, then V −{s} does not contain s and thus is contained in W . Adding s to V −{s}
places the result N . Thus, V ∈N ∈W

⋃
N .

Since every subset V of S is contained in W
⋃
N , the number of such subsets cannot be bigger than the

size of W
⋃
N , which is 2n.

Put together, W
⋃
N contains exactly all subsets of S, proving IH(n), which states that the number of

such subsets is 2n.



Proof 6: This argument proceeds by contradiction:
Let S be a set of n elements, and suppose that the number of subsets of S is not 2n. Then either the
number of subsets is less than 2n or greater than 2n. What follows examines each of these possibilities in
detail.

Part 1: The number of subsets of S cannot be less than 2n.

Let P (S) be the collection of all subsets of S, and
let St consist of all strings from the alphabet {0,1} of length n.
Also, order the sets of S to yield a sequence s1, s2, . . . sn.

Next, construct a function f : P (S)→ St as follows.

For a subset Q of S, define f(Q) = t1t2 . . . tn, where, for each i, ti = 1 if si ∈ Q and ti = 0 if si 6∈ Q.
That is, the digits of f(Q) indicate whether or not element si is in Q.

Claim: f is onto:

Let t = t1t2 . . . tn be any string of length n over the alphabet {0,1}; that is, let t be any element in St.
From this string, form a set Q from elements of S, according to the following rules:

For each i between 1 and n,
if ti is 1, then place si in Q, but
if ti is 0, then do not place si in Q.

By construction, f(Q) = t, so f is onto.

Claim: St contains 2n elements.

In considering possible strings in St,

there are 2 choices (0 or 1) for t1
there are 2 choices for t2
. . .
there are 2 choices for tn

Choices for each digit are independent, so overall there are 2× 2× 2 . . .× 2 = 2n possible strings in St.

Since f is an onto function, and the range St has 2n elements, the domain of f must have at least 2n,
proving the claim for Part 1.

Part 2: The number of subsets of S cannot be greater than 2n.

As in Part 1, Let P (S) be the collection of all subsets of S, and
order the sets of S to yield a sequence s1, s2, . . . sn.

Also, consider all integers between 0 and 2n−1 (inclusive) as represented using binary numbers. Such num-
bers can be written using no more than n binary digits. However, in the case that the binary representation
does not require n, add leading 0’s so that all integers from 0 through 2n − 1 are represented as n-digit
binary numbers. For reference, label this collection of binary numbers as BN.

Now, define a function g : BN → P (S) as follows.

Let b1b2 . . . bn be an n-digit binary number in BN .
Then g(b1b2 . . . bn) is defined as the set Y , where the subset Y is prescribed by the rules:

if bi is 1, then place si in Y , but
if bi is 0, then do not place si in Y .



Claim: Function g is onto

Let Q be a subset of S. Consider the n-digit binary number b1b2 . . . bn constructed as follows:
if si ∈Q, set bi = 1
if si 6∈Q, set bi = 0

By construction, g(b1b2 . . . bn) =Q, showing that g is onto.

Finally, since g maps all integers from 0 to 2n − 1 onto P (S), the number of elements in P (S) cannot be
greater than the number of integers from 0 to 2n − 1, namely 2n, proving Part 2.
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