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Assumed number-theoretic properties:

Notation:
• Z is the set of integers (historically, Zis for ?zahlen?, the German word for ?numbers?.
• Z+ is the set of non-negative integers (0, 1, 2, . . .)

Definitions:
• An integer n is even if it is evenly divisible by 2; that is, kn = 2k for some k ∈ Z
• An integer n is odd if it is not evenly divisible by 2; that is, kn = 2k+1 for some k ∈ Z

Properties/Theorems: Suppose r and s are integers.
• if r is even, then r − 2 is even and r − 1 is odd.
• Ifr is odd, then r − 2 is odd and r − 1 is even.
• If r and s are both even or both odd, then r+ s is even.
• If one of r and s is odd and the other is even, then r+ s is odd.

Theorem: If n ∈ Z+ is odd, then n2 also is odd.

Proof 1: by induction on n, using the following
Induction Hypothesis IH(n): If n ∈ Z, k ≤ n is odd, then k2 is odd.

Base cases (n = 0 and n = 1): Both 1 and 12 are trivially odd.
• Since 0 is even, the “if” statement is false, and IH(0) holds.
• Both 1 and 12 are trivially odd, so IH(1) holds.

Inductive step: For n > 1, we show IH(n) being true implies IH(n+1) is true.
Proof of inductive step: Consider n+1
If n+1 is even, the IH(n+1) makes no claims about k = n+1, and

for all odd k < n+1, k2 is odd by IH(n).
If n+1 is odd with n > 1, then
• For k < n+1, then k odd implies k2 odd by IH(n).
• For k = n+1,

§ if k even, then IH(n+1) makes no claims beyond IH(n).
§ if k = n+1 odd, then n− 1 is odd and at least 1.

Since k = n− 1 is odd, (n− 1)2 is odd by IH(n).
Algebraically, (n+1)2 = ((n− 1) + 2)2

= (n− 1)2 +4(n− 1) + 4
Altogether, (n+1) is the sum of an odd and two even integers, and thus is odd.

This completes the inductive step.



Proof 2: by induction, using the following

Induction Hypothesis IH(n): For k equal either n or n− 1, then
• If k ∈ Z+ is odd, then k2 is odd.
• If k ∈ Z+ is even, then k2 is even.

Base cases (n = 0 and n = 1): 02 = 0 are both even, and 12 = 1 are both odd.

Inductive step: For n > 1, we show that if IH(n) is true, then IH(n+1) is true.
Proof of inductive step: For k < n+1, the claims are true by IH(n), so consider k = n+1

Algebraically, (n+1)2 = ((n− 1) + 2)2

= (n− 1)2 +4(n− 1) + 4
Also, for any integer n, 4(n− 1) + 4 is even.
Putting these pieces together,
• If n+1 is odd with n > 1, then n− 1 is odd, and (n− 1)2 is odd by IH(n)

Thus, (n+1)2 = (n− 1)2 +4(n− 1) + 4 is an odd plus an even, and so is odd.
• If n+1 is even with n > 1, then n− 1 is even, and (n− 1)2 is even by IH(n)

Thus, (n+1)2 = (n− 1)2 +4(n− 1) + 4 is an even plus an even, and so is even.
In either case, IH(n+1) holds.

Proof 3: by induction, using the following
Induction Hypothesis IH(n):
• If n ∈ Z+ is odd, then n2 is odd.
• If n ∈ Z+ is even, then n2 is even.

Base case (n = 0 ): 02 = 0 are both even.

Inductive step: For n > 0, we show IH(n) being true implies IH(n+1) is true.
Proof of inductive step: Consider n+1

Algebraically, (n+1)2 = n2 +2n+1
Also, for any integer n, 2n+1 is odd.
Putting these pieces together,
• If n+1 is odd with n > 1, then n is even, and IH(n) applies.

Thus, (n+1)2 = n2 +2n+1 is an even plus an odd, and so is odd.
• If n+1 is even with n > 1, then n is odd, and IH(n) applies..

Thus, (n+1)2 = n2 +2n+1 is an odd plus an odd, and so is even.
In either case, IH(n+1) is true.



An Alternative Proof

Alternative Proof: We prove (2m+1)2 is odd for all m ∈ Z+.

Induction Hypothesis IH(m): (2m+1)2 is odd.

Base case (m = 0): When m = 0, 2m+1 is 1, and 12 = 1 is odd.

Inductive Step: For m> 0 we show IH(m) implies IH(m+1).

Proof of the inductive step.
(2m+1)2 = 4m2 +4m+1 = 2(2m2 +2m) + 1
Since 2(2m2 +2m) + 1 has the form 2 times an integer + 1, we conclude this number
(or equivalently (2m+1)2) is odd, establishing IH(m+1).


