3 Inductive Proofs and an Alternative Proof for Theorem: n odd implies n^2 odd

by Henry M. Walker, Grinnell College

Assumed number-theoretic properties:

Notation:

- $\mathbb Z$ is the set of integers (historically, Zis for ?zahlen?, the German word for ?numbers?.
- \mathbb{Z}^+ is the set of non-negative integers $(0, 1, 2, \ldots)$

Definitions:

- An integer n is even if it is evenly divisible by 2; that is, $kn = 2k$ for some $k \in \mathbb{Z}$
- An integer n is odd if it is not evenly divisible by 2; that is, $kn = 2k + 1$ for some $k \in \mathbb{Z}$

Properties/Theorems: Suppose r and s are integers.

- if r is even, then $r-2$ is even and $r-1$ is odd.
- If r is odd, then $r-2$ is odd and $r-1$ is even.
- If r and s are both even or both odd, then $r + s$ is even.
- If one of r and s is odd and the other is even, then $r + s$ is odd.

Theorem: If $n \in \mathbb{Z}^+$ is odd, then n^2 also is odd.

Proof 1: by induction on n, using the following Induction Hypothesis IH (n) : If $n \in \mathbb{Z}$, $k \leq n$ is odd, then k^2 is odd.

Base cases $(n = 0 \text{ and } n = 1)$: Both 1 and 1² are trivially odd.

- Since $\hat{0}$ is even, the "if" statement is false, and IH(0) holds.
- Both 1 and 1^2 are trivially odd, so IH(1) holds.

Inductive step: For $n > 1$, we show IH(n) being true implies IH(n + 1) is true. Proof of inductive step: Consider $n+1$

If $n+1$ is even, the IH($n+1$) makes no claims about $k = n+1$, and

for all odd $k < n+1$, k^2 is odd by IH(n).

If $n+1$ is odd with $n>1$, then

- For $k < n+1$, then k odd implies k^2 odd by IH(n).
- For $k = n + 1$,
	- § if k even, then IH($n + 1$) makes no claims beyond IH(n).

§ if $k = n + 1$ odd, then $n - 1$ is odd and at least 1. Since $k = n - 1$ is odd, $(n - 1)^2$ is odd by IH(n). Algebraica

ally,
$$
(n+1)^2 = ((n-1)+2)^2
$$

 $=(n-1)^2+4(n-1)+4$ Altogether, $(n+1)$ is the sum of an odd and two even integers, and thus is odd.

This completes the inductive step.

Proof 2: by induction, using the following

Induction Hypothesis IH(n): For k equal either n or $n-1$, then

- If $k \in \mathbb{Z}^+$ is odd, then k^2 is odd.
- If $k \in \mathbb{Z}^+$ is even, then k^2 is even.

Base cases $(n = 0 \text{ and } n = 1)$: $0^2 = 0$ are both even, and $1^2 = 1$ are both odd.

Inductive step: For $n > 1$, we show that if IH(n) is true, then IH(n + 1) is true.

```
Proof of inductive step: For k < n+1, the claims are true by IH(n), so consider k = n+1Algebraically, (n+1)^2 = ((n-1)+2)^2
```

$$
= (n-1)^2 + 4(n-1) + 4
$$

Also, for any integer n , $4(n-1)+4$ is even.

Putting these pieces together,

- If $n+1$ is odd with $n>1$, then $n-1$ is odd, and $(n-1)^2$ is odd by IH(n)
- Thus, $(n+1)^2 = (n-1)^2 + 4(n-1) + 4$ is an odd plus an even, and so is odd.
- If $n+1$ is even with $n>1$, then $n-1$ is even, and $(n-1)^2$ is even by IH(n) Thus, $(n+1)^2 = (n-1)^2 + 4(n-1) + 4$ is an even plus an even, and so is even.

In either case, IH $(n+1)$ holds.

Proof 3: by induction, using the following Induction Hypothesis $IH(n)$:

- If $n \in \mathbb{Z}^+$ is odd, then n^2 is odd.
- If $n \in \mathbb{Z}^+$ is even, then n^2 is even.

Base case $(n = 0)$: $0^2 = 0$ are both even.

Inductive step: For $n > 0$, we show IH(n) being true implies IH(n + 1) is true. Proof of inductive step: Consider $n+1$

Algebraically, $(n + 1)^2 = n^2 + 2n + 1$

Also, for any integer $n, 2n + 1$ is odd.

Putting these pieces together,

- If $n+1$ is odd with $n>1$, then n is even, and IH(n) applies.
- Thus, $(n+1)^2 = n^2 + 2n + 1$ is an even plus an odd, and so is odd.
- If $n+1$ is even with $n>1$, then n is odd, and IH(n) applies..

Thus, $(n+1)^2 = n^2 + 2n + 1$ is an odd plus an odd, and so is even. In either case, IH $(n+1)$ is true.

An Alternative Proof

Alternative Proof: We prove $(2m+1)^2$ is odd for all $m \in \mathbb{Z}^+$. Induction Hypothesis IH (m) : $(2m+1)^2$ is odd.

Base case $(m = 0)$: When $m = 0, 2m + 1$ is 1, and $1^2 = 1$ is odd.

Inductive Step: For $m > 0$ we show IH(m) implies IH(m + 1).

Proof of the inductive step.

 $(2m+1)^2 = 4m^2 + 4m + 1 = 2(2m^2 + 2m) + 1$

Since $2(2m^2+2m)+1$ has the form 2 times an integer + 1, we conclude this number (or equivalently $(2m+1)^2$) is odd, establishing IH $(m+1)$.