/* program to time several partition algorithms on data sets of various sizes */ /** *************************************************************************** * @remark program to time several partition algorithms on data sets * * of various sizes * * * * @author Henry M. Walker * * @file partition-alt.c * * @date August 7, 2022, revised November 30, 2024 * * * * @remark References * * @remark Henry M. Walker, Pascal: Problem Solving and Structured Program * * Design, Little, Brown, and Company, 1987, pages 500-506 * * @remark Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivset, and * * Clifford Stein, Introduction to Algorithms, Third Edition * * The MIT Press, 2009, pages170-185 * * @remark Reading on Quicksort, https://blue.cs.sonoma.edu/~hwalker/courses * * /415-sonoma.fa22/readings/reading-quicksort.php * * * * @remark People participating with Problem/Progra Discussions: * * None * * * *****************************************************************************/ #include #include // for malloc, free #include // for time #define printCopyTime 0 // 1 = print times to copy arrays; 0 = omit this output /** ******************************************************************************* * structure to identify both the name of a partition algorithm and * * a pointer to the function that performs the partition * * the main function utilizes this struct to define an array of partition * * algorithms, based on different loop invariants, in to be timed by this program.* *********************************************************************************/ typedef struct algs { char * name; int (*proc) (int [ ], int, int, int); } partitionType; /** ******************************************************************************* * procedure to help check partition worked correctly * * @param pivotSpot index where pivot was supposed to be moved * * @param correctPivot value that should have been used as the pivot in partition * * @param a the array being partitioned * * @param first the index at the start of the segment to be partitioned * * @param last the index at the end of the segment to be partitioned * * @post returns NO1 if correctPivot is not at index pivotSpot * * NO2 if at least one elements betreew index first and pivotSpot * * are greater than correctPivot * * NO3 if at least one elements betreew index pivotSpot and last * * are less than correctPivot * * OK! if the array segment passes the above checks * *********************************************************************************/ char * checkPivotSpot (int pivotSpot, int correctPivot, int a [ ], int first, int last) { if( a[pivotSpot] != correctPivot) { return "NO1"; } int i; for (i = first; i < pivotSpot; i++) { if (a[i] > a[pivotSpot]) return "NO2"; } for (i = pivotSpot+1; i <= last; i++) { if (a[i] < a[pivotSpot]) return "NO3"; } return "OK!"; } /** ******************************************************************************* * procedure implements the partition operation, following Loop Invariant 1a * * the Reading on Quicksort referenced above * * in brief: array segment has pivot, then small, unprocessed, large elements * * both unprocessed endpoints examined, swapping done in line * * @param a the array containing the segment to be partitioned * * @param size the size of array a * * @param left the index of the first array element in the partition * * @param right the index of the last array element in the partitionn * * @post a[left] is moved to index mid, with left <= mid <= right * * @post elements between left and right are permuted, so that * * a[left], ..., a[mid-1] <= a[mid] * * a[mid+1], ..., a[right] >= a[mid] * * @post elements outside left, ..., right are not changed * * @returns mid * / *********************************************************************************/ int invariant1a (int a[ ], int size, int left, int right) { int pivot = a[left]; int l_spot = left+1; int r_spot = right; int temp; while (l_spot <= r_spot) { while( (l_spot <= r_spot) && (a[r_spot] >= pivot)) r_spot--; while ((l_spot <= r_spot) && (a[l_spot] <= pivot)) l_spot++; // if misplaced small and large values found, swap them if (l_spot < r_spot) { temp = a[l_spot]; a[l_spot] = a[r_spot]; a[r_spot] = temp; l_spot++; r_spot--; } } // swap a[left] with biggest small value temp = a[left]; a[left] = a[r_spot]; a[r_spot] = temp; return r_spot; } /** ******************************************************************************* * procedure implements the partition operation, following Loop Invariant 1b * * the Reading on Quicksort referenced above * * in brief: array segment has pivot, then small, large, unprocessed elements * * left unprocessed endpoints examined, swapping uses swap function * * @param a the array containing the segment to be partitioned * * @param size the size of array a * * @param left the index of the first array element in the partition * * @param right the index of the last array element in the partitionn * * @post a[left] is moved to index mid, with left <= mid <= right * * @post elements between left and right are permuted, so that * * a[left], ..., a[mid-1] <= a[mid] * * a[mid+1], ..., a[right] >= a[mid] * * @post elements outside left, ..., right are not changed * * @returns mid * *********************************************************************************/ /* invariant 1b: partition, swapping many interations, plus separate swap */ int invariant1b (int a[ ], int size ,int first, int last) { int pivot = a[first]; int left; int right = last; int temp; for (left = first+1; left <= right;) { if (a[left] < pivot) { left++; } else { temp = a[left]; a[left] = a[right]; a[right] = temp; right--; } } temp = a[right]; a[right] = a[first]; a[first] = temp; return right; } /** ******************************************************************************* * driver program for testing and timing partition algorithms * *********************************************************************************/ int main ( ) { // identify partition procedures used and their decriptive names #define numAlgs 2 partitionType procArray [numAlgs] = {{"invariant 1a ", invariant1a }, {"invariant 1b ", invariant1b }}; // print output headers printf ("timing/testing of partition functions\n"); // print headings printf (" Data Set Times\n"); printf ("Algorithm Size Ascending Order Random Order Descending Order\n"); int size; int reps; int maxreps = 1000; // organize data sets of increasing size for ascending, random, and descending data for (size = 100000; size <= 1600000; size *= 2) { // create control and initial data set arrays int * asc = (int *) malloc (size * sizeof(int)); //array with ascending dpaata int * ran = (int *) malloc (size * sizeof(int)); //array with random data int * des = (int *) malloc (size * sizeof(int)); // array with descending data int i; for (i = 0; i< size; i++) { asc[i] = 2*i; ran[i] = rand(); des[i] = 2*(size - i - 1); } // copy to test arrays int * tempAsc = malloc (size * sizeof(int)); int * tempRan = malloc (size * sizeof(int)); int * tempDes = malloc (size * sizeof(int)); // repeat for each algorithm for (int alg = 0; alg < numAlgs; alg++) { // identify function and data set size printf ("%s %7d", procArray[alg].name, size); // timing variables clock_t start_time, end_time; double copy_time, elapsed_time; int pivotSpot; /* * * * * * * * * * * * * * * * * * * * * * * * * test and time algorithm: algProc[alg] * * * * * * * * * * * * * * * * * * * * * * * * */ /* * * * * * * test ascending data * * * * * * */ // determine average time to copy array start_time = clock (); for (reps = 0; reps < maxreps; reps++) { for (i = 0; i< size; i++) { tempAsc[i] = asc[i]; } } end_time = clock(); copy_time = ((end_time - start_time) / (double) CLOCKS_PER_SEC ); if (printCopyTime) printf ("copy time: %10.1lf\n", copy_time); // timing for algorithm start_time = clock (); for (reps = 0; reps < maxreps; reps++) { for (i = 0; i< size; i++) { tempAsc[i] = asc[i]; } pivotSpot = procArray[alg].proc (tempAsc, size, 0, size-1); } end_time = clock(); elapsed_time = (end_time - start_time) / (double) CLOCKS_PER_SEC; printf ("%13.1lf ", elapsed_time - copy_time); printf ("%3s ", checkPivotSpot (pivotSpot, 0, tempAsc, 0, size-1)); /* * * * * * * test random data * * * * * * */ // determine time to copy array start_time = clock (); for (reps = 0; reps < maxreps; reps++) { for (i = 0; i< size; i++) { tempRan[i] = ran[i]; } } end_time = clock(); copy_time = ((end_time - start_time) / (double) CLOCKS_PER_SEC ); if (printCopyTime) printf ("copy time: %10.1lf", copy_time); // timing for algorithm start_time = clock (); for (reps = 0; reps < maxreps; reps++) { for (i = 0; i< size; i++) { tempRan[i] = ran[i]; } pivotSpot = procArray[alg].proc (tempRan, size, 0, size-1); } end_time = clock(); elapsed_time = (end_time - start_time) / (double) CLOCKS_PER_SEC; printf ("%13.1lf ", elapsed_time - copy_time); printf ("%3s ", checkPivotSpot (pivotSpot, ran[0], tempRan, 0, size-1)); /* * * * * * * test descending data * * * * * * */ // determine time to copy array start_time = clock (); for (reps = 0; reps < maxreps; reps++) { for (i = 0; i< size; i++) { tempDes[i] = des[i]; } } end_time = clock(); copy_time = ((end_time - start_time) / (double) CLOCKS_PER_SEC ); if (printCopyTime) printf ("copy time: %10.1lf", copy_time); // timing for algoirthm start_time = clock (); for (reps = 0; reps < maxreps; reps++) { for (i = 0; i< size; i++) { tempDes[i] = des[i]; } pivotSpot = procArray[alg].proc (tempDes, size, 0, size-1); } end_time = clock(); elapsed_time = (end_time - start_time) / (double) CLOCKS_PER_SEC; printf ("%13.1lf ", elapsed_time - copy_time); printf ("%3s ", checkPivotSpot (pivotSpot, 2*(size - 1), tempDes, 0, size-1)); printf ("\n"); } // end of loop for testing an algorithm // leave blank line before output of next size printf ("\n"); // clean up copies of test arrays free (tempAsc); free (tempRan); free (tempDes); // clean up original test arrays free (asc); free (ran); free (des); } // end of loop for testing procedures with different array sizes return 0; }