Name:

Rules and Hints

- You may use one handwritten 8.5×11 " cheat sheet (front and back). This is the only additional resource you may consult during this exam. No calculators.
- When you write code, be sure that the indentation level of each statement is clear.
- Explain/show work if you want to receive partial credit for wrong answers.
- As long as your code is correct, you will get full credit. No points for style.
- As always, the SSU rules on academic integrity are in effect.

Problem		Max Score
Your Score		
	Problem 1: Trace Code	20
	Problem 2: Trace Functions	
	Problem 3: Define functions	
Problem 4: Write a complete program	30	
Total	30	

Problem 1: Trace Code (20 points)

Write what will be printed to the screen when each of the following snippets of code is executed in PyCharm or in the Online Python Tutor.

Write your final solution in the box provided
Do not write any scratch-work in the solution box.
In your solution, be very precise with spacing, line breaks, etc.
Treat each sub-problem as an independent question.
All questions in this section are worth 4 points.

Problem 1A

$$
\begin{aligned}
& y=1 \\
& \text { while } y<10: \\
& \quad y=y * 3 \\
& \quad \text { print }(y)
\end{aligned}
$$

\square

Problem 1B

```
s = 'Spring Break'
print(len(s))
print(s[4:len(s)])
print(s[-10:-4])
print(s[:7]*3)
```


Problem 1C

```
s = ['It', 'Feels',
    'Like', 'Summer',
    'Of sixty-nine']
print(len(s))
print(len(s[3]))
print(s[4])
print(s[2][2])
```


Problem 1D

$$
\begin{aligned}
& A=[-3,-2,0,2] \\
& B=A[:] \\
& C=A \\
& B[3]=-3 \\
& C[1]=2 \\
& \text { print }(B) \\
& \operatorname{print}(A+C)
\end{aligned}
$$

Problem 1E

$$
\begin{aligned}
& \mathrm{L}= {[1,2,3] } \\
& \mathrm{i}=-2 \\
& \text { while } i<1: \\
& i=i+1 \\
& \text { L. append(i) } \\
& \text { print }(L)
\end{aligned}
$$

April. 5, 2018

Problem 2: Trace Functions (20 points)

Write what will be printed to the screen when each of the following snippets of code is executed in PyCharm or in the Online Python Tutor.

Write your solution in the box provided.
Do not write any scratch-work in the solution box.
In your solution, be very precise with spacing, line breaks, etc.
Treat each sub-problem as an independent question.
All questions in this section are worth 5 points.

Problem 2A

```
def intdiv(m, n):
    return m // n
n = 25
m = 7
z = intdiv(n, m)
print(z)
```


Problem 2B

```
def mystery(s):
    str = ''
    for char in s:
        str = char*2 + str
        return str
answer = mystery('cs1')
print(answer)
```


Problem 2C

```
def getElem(A):
        return A[2+(len(A) % 2)]
A = [0, 1, 2, 4, 8,
    3, 6, 4, 8]
La = getElem(A)
B = [[0, 1], [2, 4, 8],
    [3, 6], [4, 8]]
Lb = getElem(B)
print(La, Lb)
```


Problem 2D

```
def modifyList(L):
    for e in L:
        e = e + 3
    print(L)
    for i in range(len(L)):
            L[i] = L[i]*3
    print(L)
A = [3,2,1]
modifyList(A)
print(A)
```

April. 5, 2018

Problem 3: Define functions (30 points)

Define functions to perform the following tasks, obeying the stated requirements, including:

- Assume that the math library has been imported for you.
- Do not ask the user for input unless the specification explicitly requires it.
- Do not print anything unless the specification explicitly requires it.
- Do not call any function unless unless the specification explicitly requires it.

Problem 3A (5 points)
Define a function named bytes_to_megabytes that:

- Takes 1 parameter: an integer representing bytes
- Returns a float representing the value in megabytes. Each megabyte holds $1,000,000$ bytes.

For example, bytes_to_megabytes (2500000) returns 2.5

Problem 3B (10 points)
Define a function named glue_under that:

- Takes 1 parameter: a list of strings
- Returns a string that consists elements from the list concatenated together such that: the string starts with an underscore, contains every string from the list separated by underscores, and ends with an underscore.

Example of calling this function:

```
glue_under(['a', 'bc', 'def', 'g', 'hi']) returns '_a_bc_def_g_hi_'
```

Problem 3C (10 points)
Define a function named getRowMax that:

- Takes 2 parameters: a nested list (i.e., a 2-dimensional list) and an integer i
- Returns the maximum of all the elements in row i

You may assume that row i exists.
Example of calling this function:
Let $\mathrm{L}=[[5,7,10,4],[3,2,1],[8,9],[0,6,5,2]]$, then getRowMax (L, 3) returns 6 because row 3 is $[0,6,5,2]$ which has max value 6 .

Problem 3D (5 points)
Define a function named compareRows that:

- Takes 3 parameters: a nested list (i.e., a 2-dimensional list) and two integers i and j
- Returns True if the maximum element in row i of the nested list is greater or equal to the maximum element in row j of the nested list; Otherwise Returns False
- Calls the function getRowMax (which was defined in Problem 3C) to compute maximum of an individual row
Example of calling this function:
Let $L=[[5,7,10,4],[3,2,1],[8,9],[0,6,5,2]]$, then
compareRows (L, 0, 2) returns True because maximum element in row 0 (10) is greater than maximum element in row 2 (9)

Problem 4: Write a complete program (30 points)

For this problem, you must write a complete program. This includes writing a docstring, logic in def main(), a call to main(), any necessary library imports, etc.
If you get stuck, try to maximize your partial credit. To get full credit, your functions should call each other where appropriate and avoid duplicating code. In all examples, user input is underlined.

Your program should contain the following functions:

- get_nouns:
- Takes no parameters. Prompts the user for nouns until the user enters a blank line. Each line of user input should be considered a noun. Returns a list of nouns the user entered (not including the blank line).
Example: A call to get_nouns with the below sample user input
Enter a name: sesame st.
Enter a name: ernie
Enter a name: big BIRD
Enter a name:
should return the list ['sesame st.', 'ernie', 'big BIRD']
- make_proper:
- Takes 1 parameter: a string holding a noun. Returns a new string that is the same as the original string, except the first letter of each word is capitalized, all other letters are lower case, the final string does not start or end with any space, and intermediate whitespace is simplified.
Example: For 'sesame st.', the function returns 'Sesame St.'
Example: For 'ernie', the function returns 'Ernie'
Example: For ' big BIRD ', the function returns 'Big Bird'
- main:
- Calls get_nouns to get a list of nouns from the user. Use make_proper to print the proper noun versions of each, printing in reverse order.
Sample input/output:

```
Enter a name: kErmit t. frog
Enter a name: BIG BIRD
Enter a name: bert and ernie
Enter a name:
Bert And Ernie
Big Bird
Kermit T. Frog
```

Start your solution on the next page...

Problem 4, continued...

Problem 4, continued...

