
CS 115 Exam 3 (Section 1) Spring 2017 Thu. 05/18/2017

Name:

Rules and Hints

• You may use one handwritten 8.5 x 11” cheat sheet (front and back). This is the only
additional resource you may consult during this exam. No calculators.

• When you write code, be sure that the indentation level of each statement is clear.

• Explain/show work if you want to receive partial credit for wrong answers.

• As long as your code is correct, you will get full credit. No points for style.

• As always, the SSU rules on academic integrity are in effect.

Problem Max Score Your Score

Problem 1: Binary Search 10

Problem 2: Selection Sort 10

Problem 3: Mergesort 10

Problem 4: Recursion 20

Problem 5: Defining classes 20

Problem 6: Using classes 30

Total 100

Page 1 of 15

CS115 Exam 3 Page 2 of 15

Cheat Sheet Additions

The functions below are just for your reference on Problems 1 and 2. You do not need to
read them if you understand the algorithms.

def binary_search(search_list , value_to_find):

first = 0

last = len(search_list) - 1

while first <= last:

middle = (first + last) // 2

Problem 1: state the values of first , last ,

and middle at this point in the code

if value_to_find == search_list[middle]:

return middle

elif value_to_find < search_list[middle]:

last = middle - 1

else:

first = middle + 1

return None

def selection_sort(list_to_sort):

for i in range(len(list_to_sort) - 1):

min_index = find_min_index(list_to_sort , i)

swap(list_to_sort , i, min_index)

Problem 2: Show list contents at this point

def swap(L, i, j):

x = L[i]

L[i] = L[j]

L[j] = x

def find_min_index(L, s):

min_index = s

for i in range(s, len(L)):

if L[i] < L[min_index]:

min_index = i

return min_index

Spring 2017

CS115 Exam 3 Page 3 of 15

Cheat Sheet Additions

The functions below are just for your reference on Problem 3. You do not need to read them
if you understand the algorithms.

def merge(L, start_index , sublist_size):

index_left = start_index

left_stop_index = start_index + sublist_size

index_right = start_index + sublist_size

right_stop_index = min(start_index + 2 * sublist_size , len(L))

L_tmp = []

while (index_left < left_stop_index and

index_right < right_stop_index):

if L[index_left] < L[index_right]:

L_tmp.append(L[index_left])

index_left += 1

else:

L_tmp.append(L[index_right])

index_right += 1

if index_left < left_stop_index:

L_tmp.extend(L[index_left : left_stop_index])

if index_right < right_stop_index:

L_tmp.extend(L[index_right : right_stop_index])

L[start_index : right_stop_index] = L_tmp

def merge_sort(L):

chunksize = 1

while chunksize < len(L):

left_start_index = 0 # Start of left chunk in each pair

while left_start_index + chunksize < len(L):

merge(L, left_start_index , chunksize)

left_start_index += 2 * chunksize

chunksize *= 2

Problem 3: Show list contents at this point

Spring 2017

CS115 Exam 3 Page 4 of 15

Problem 1: Binary Search (10 points)
Consider the following sorted list:

L = ['blaster ',
'crown ',
'evilgnome ',
'goggles ',
'lich ',
'pipe ',
'raptor ',
'star ',
'trojan ',
'walrus ']

Problem 1A Fill out the below table, tracing the call v = binary_search(L, 'goggles'),
a binary search for 'goggles' in this list. Fill out one row per iteration of the loop
(per the comment in the code on page 2). If there are more rows than iterations,
leave the extra rows blank. At the end, write the value v returned by the function.

Iteration Value of first Value of last Value of middle Value of L[middle]

1

2

3

4

5

Return value v:

Problem 1B Fill out the below table, tracing the call v = binary_search(L, 'septre'),
a binary search for 'septre' in this list. Fill out one row per iteration of the loop
(per the comment in the code on page 2). If there are more rows than iterations,
leave the extra rows blank. At the end, write the value v returned by the function.

Iteration Value of first Value of last Value of middle Value of L[middle]

1

2

3

4

5

Return value v:

Spring 2017

CS115 Exam 3 Page 5 of 15

Problem 2: Selection Sort (10 points)
Consider the following list:

L = ['psyduck ',
'pikachu ',
'jigglypuff ',
'charizard ',
'brock ',
'turtwig ',
'bulbasaur ',
'magikarp ']

In the table below, show the contents of the list after each of the first four iterations of
the for-loop in selection_sort (per the comment in the code on page 2).

You may just draw a horizontal line between cells if a word has not changed position.

Index Initial
Order

After i = 0
iteration

After i = 1
iteration

After i = 2
iteration

After i = 3
iteration

0 psyduck

1 pikachu

2 jigglypuff

3 charizard

4 brock

5 turtwig

6 bulbasaur

7 magikarp

Spring 2017

CS115 Exam 3 Page 6 of 15

Problem 3: Mergesort (10 points)
Consider the following list:

L = ['psyduck ',
'bulbasaur ',
'jigglypuff ',
'pikachu ',
'magikarp ',
'brock ',
'charizard ',
'turtwig ']

In the diagrams below, show the contents of the list after each of the first three iterations
of the outer while-loop in merge_sort (per the comment in the code on page 3).

Index Initial Order After
chunksize == 1

After
chunksize == 2

After
chunksize == 4

0 psyduck

1 bulbasaur

2 jigglypuff

3 pikachu

4 magikarp

5 brock

6 charizard

7 turtwig

Spring 2017

CS115 Exam 3 Page 7 of 15

Problem 4: Recursion (20 points)
Consider the following function definition:

def fun(x, y):

Parameters x and y are strings

Recall: if x == 'a', then x[1:] is ''
if len(x) == 0 or len(y) == 0:

return 0

elif x[0]. lower() == y[0]. lower ():

return 1 + fun(x[1:], y[1:])

else:

return fun(x[1:], y[1:])

Problem 4A What are the return values of each code snippet, below?

fun('', 'At ') # return value is:

fun('C', 'cAt ') # return value is:

Problem 4B Show the chain of recursive calls, and state what the return value is for
each call, starting with:

fun('NaClC ', 'TaCOcAt ')

Problem 4C Summarize what this function does in one sentence. (Do not explain the
code line-by-line; instead, provide a high-level description.)

Spring 2017

CS115 Exam 3 Page 8 of 15

Problem 4D Consider the following function definition:

def func(n):

Parameter n is an integer

print(" Current value is", n)

if n <= 1:

print("Base case:", n % 2)

return str(n % 2)

else:

val = func(n//2)

print(" Returning", val + str(n % 2))

return val + str(n % 2)

Write the output obtained upon executing the following statement:

print("Final answer is", func(6))

Spring 2017

CS115 Exam 3 Page 9 of 15

Extra Page . . .

Spring 2017

CS115 Exam 3 Page 10 of 15

Problem 5: Defining classes (20 points)
In this problem, you will define a class to represent a package. Your class should be
named SpecialDelivery, and you should define the methods below. Hint: if you are
using the print or input functions to implement these methods, you are doing it wrong.

__init__: Initializes a SpecialDelivery object. Takes two parameters: a numerical
package weight, and a Boolean value indicating if the package is fragile. It saves
these in appropriate attributes, and initializes any attributes used by other methods.

is_fragile: Returns True if the package is fragile, and False otherwise.

get_weight: Returns the weight of the package.

set_from: Takes five parameters—the name, street address, city, state and zip code—
each of which is a string related to the sender, and saves these in an attribute.

set_to: Takes five parameters—the name, street address, city, state and zip code—each
of which is a string related to the recipient, and saves these in an attribute.

get_from: If no sender has been added, returns None; else, returns a list holding the
five strings describing the sender: name, street address, city, state and zip code.

get_to: If no recipient has been added, returns None; else, returns a list holding the
five strings describing the recipient: name, street address, city, state and zip code.

__lt__: Compares self to another SpecialDelivery object. It returns True if self
has a smaller weight than the other object, and False otherwise.

__str__: Returns a string summarizing the SpecialDelivery object, following the
format below exactly (two examples follow):

12.1 lb package:

From: None

To: None

or this fragile example, with full addresses filled out:

1.12 lb package (Fragile):

From: Sally Sonoma

1801 East Cotati Dr.

Rohnert Park, CA 93928

To: Ramona R. Sonoma

2137 Indiana Avenue

Honolulu , Hawaii 96814

You should use values derived from attributes in place of the underlined values.

Start your solution on the next page...
Toward the end of the exam, there are extra pages if needed.

Spring 2017

CS115 Exam 3 Page 11 of 15

Problem 5, continued . . .

Spring 2017

CS115 Exam 3 Page 12 of 15

Problem 6: Using classes (30 points)
For this problem, you must write a complete program. This includes logic in def main(),
a call to main(), any necessary library imports, etc. You do not need to write any
docstrings.

To earn full credit, you must use the methods from the SpecialDelivery class whenever
appropriate. You may assume that the class, as described in Problem 5, has already been
correctly implemented for you. Read the instructions carefully before you start coding!

Your program should do the following:

1. Define a function called SendPackages that does the following:

• Prompt for the sender’s name. If this input is empty, return an empty list.

From: Sally Sonoma

• Prompt for the sender’s other data, as in the below interaction.

Street: 1801 East Cotati Dr.

City: Rohnert Park

State: CA

Zip: 93928

• Prompt the user for how many packages they will send using this sender.

• For each package:

– Prompt for recipient and package information, as in the below interaction:

To: Ramona R. Sonoma

Street: 2137 Indiana Avenue

City: Honolulu

State: Hawaii

Zip: 96814

Weight: 1.12

Fragile (y/n): y

– Create a SpecialDelivery object, using all the data that has been entered
above: sender (From), recipient (To), weight and fragility.

• Returns a list of all the SpecialDelivery objects created.

2. Define a function called main that does the following:

• Call SendPackages repeatedly, until it returns an empty list. Each time
SendPackages returns a non-empty list, aggregate these into a single list.

• Search this list for the largest and smallest SpecialDelivery objects, and print
the summary data of these packages (as provided by the __str__ method).

• Sum the weight of all the packages marked fragile, and print the total weight
of those packages.

Start your solution on the next page...
Toward the end of the exam, there are extra pages if needed.

Spring 2017

CS115 Exam 3 Page 13 of 15

Problem 6, continued . . .

Spring 2017

CS115 Exam 3 Page 14 of 15

Extra Pages . . .

Spring 2017

CS115 Exam 3 Page 15 of 15

Extra Pages . . .

Spring 2017

