
CS 115 Exam 3 (Section 1) Fall 2017 Thu. 12/14/2017

Name:

Rules and Hints

• You may use one handwritten 8.5 x 11” cheat sheet (front and back). This is the only
additional resource you may consult during this exam. No calculators.

• When you write code, be sure that the indentation level of each statement is clear.

• Explain/show work if you want to receive partial credit for wrong answers.

• As long as your code is correct, you will get full credit. No points for style.

• As always, the SSU rules on academic integrity are in effect.

Problem Max Score Your Score

Problem 1: Binary Search 10

Problem 2: Selection Sort 10

Problem 3: Mergesort 10

Problem 4: Trace Functions 20

Problem 5: Defining classes 20

Problem 6: Using classes 30

Total 100

Page 1 of 15

CS115 Exam 3 Page 2 of 15

Cheat Sheet Additions

The functions below are for your reference on Problems 1 and 2.

def binary_search(search_list , value_to_find):

first = 0

last = len(search_list) - 1

while first <= last:

middle = (first + last) // 2

Problem 1: state the values of first , last ,

and middle at this point in the code

if value_to_find == search_list[middle]:

return middle

elif value_to_find < search_list[middle]:

last = middle - 1

else:

first = middle + 1

return None

def selection_sort(list_to_sort):

for i in range(len(list_to_sort) - 1):

min_index = find_min_index(list_to_sort , i)

swap(list_to_sort , i, min_index)

Problem 2: Show list contents at this point

def swap(L, i, j):

x = L[i]

L[i] = L[j]

L[j] = x

def find_min_index(L, s):

min_index = s

for i in range(s, len(L)):

if L[i] < L[min_index]:

min_index = i

return min_index

Spring 2017

CS115 Exam 3 Page 3 of 15

Cheat Sheet Additions

The functions below are for your reference on Problem 3.

def merge(L, start_index , sublist_size):

index_left = start_index

left_stop_index = start_index + sublist_size

index_right = start_index + sublist_size

right_stop_index = min(start_index + 2 * sublist_size , len(L))

L_tmp = []

while (index_left < left_stop_index and

index_right < right_stop_index):

if L[index_left] < L[index_right]:

L_tmp.append(L[index_left])

index_left += 1

else:

L_tmp.append(L[index_right])

index_right += 1

if index_left < left_stop_index:

L_tmp.extend(L[index_left : left_stop_index])

if index_right < right_stop_index:

L_tmp.extend(L[index_right : right_stop_index])

L[start_index : right_stop_index] = L_tmp

def merge_sort(L):

chunksize = 1

while chunksize < len(L):

left_start_index = 0 # Start of left chunk in each pair

while left_start_index + chunksize < len(L):

merge(L, left_start_index , chunksize)

left_start_index += 2 * chunksize

chunksize *= 2

Problem 3: Show list contents at this point

Spring 2017

CS115 Exam 3 Page 4 of 15

Problem 1: Binary Search (10 points)
Consider the following sorted list:

L = ['drax ',
'groot ',
'natasha ',
'nebula ',
'rhodey ',
'steve ',
'tchalla ',
'thor ',
'vision ',
'wanda ']

Problem 1A Fill out the below table, tracing the call v = binary_search(L, 'nebula'),
a binary search for 'nebula' in this list. Fill out one row per iteration of the loop
(per the comment in the code on page 2). If there are more rows than iterations,
leave the extra rows blank. At the end, write the value v returned by the function.

Iteration Value of first Value of last Value of middle Value of L[middle]

1

2

3

4

5

Return value v:

Problem 1B Fill out the below table, tracing the call v = binary_search(L, 'wanda'),
a binary search for 'wanda' in this list. Fill out one row per iteration of the loop
(per the comment in the code on page 2). If there are more rows than iterations,
leave the extra rows blank. At the end, write the value v returned by the function.

Iteration Value of first Value of last Value of middle Value of L[middle]

1

2

3

4

5

Return value v:

Spring 2017

CS115 Exam 3 Page 5 of 15

Problem 2: Selection Sort (10 points)
Consider the following list:

L = ['turley ',
'starkey ',
'noodler ',
'jukes ',
'smee ',
'mullins ',
'whibbles ',
'cecco ']

In the table below, show the contents of the list after each of the first four iterations of
the for-loop in selection_sort (per the comment in the code on page 2).

You may just draw a horizontal line between cells if a word has not changed position.

Index Initial
Order

After i = 0
iteration

After i = 1
iteration

After i = 2
iteration

After i = 3
iteration

0 turley

1 starkey

2 noodler

3 jukes

4 smee

5 mullins

6 whibbles

7 cecco

Spring 2017

CS115 Exam 3 Page 6 of 15

Problem 3: Mergesort (10 points)
Consider the following list:

L = ['smee ',
'noodler ',
'turley ',
'cecco ',
'jukes ',
'mullins ',
'whibbles ',
'starkey ']

In the diagrams below, show the contents of the list after each of the first three iterations
of the outer while-loop in merge_sort (per the comment in the code on page 3).

Index Initial Order After
chunksize == 1

After
chunksize == 2

After
chunksize == 4

0 smee

1 noodler

2 turley

3 cecco

4 jukes

5 mullins

6 whibbles

7 starkey

Spring 2017

CS115 Exam 3 Page 7 of 15

Problem 4: Trace Functions (20 points)
Write what will be printed to the screen when each of the following snippets of code is
executed in PyCharm or in the Online Python Tutor.

Write your solution in the box provided.
Do not write any scratch-work in the solution box.
In your solution, be very precise with spacing, line breaks, etc.
Treat each sub-problem as an independent question.
All questions in this section are worth 5 points.

Problem 4A

def incPrint(a, b):

a += b

print(a, b)

a = 5 % 3

b = 10**2

print(a, b)

incPrint(b, a)

incPrint(b, 8)

print(a, b)

Problem 4B

def appSee(L, a):

L[a] = max(L)

print(L)

L = [10, 7, 14, 8]

appSee(L, 1)

appSee(L, -1)

Spring 2017

CS115 Exam 3 Page 8 of 15

Problem 4C

def addSum(L):

L.append(sum(L))

print(L)

A = [1,2,3]

addSum(A)

addSum(A)

Problem 4D

def printRowInfo(R):

print('Items:', len(R))

for x in R:

print(len(x),end=' ')
print()

A = [["134" , "44"], ["123"] ,

["4", "35", "1"]]

for i in range(len(A)):

printRowInfo(A[i])

Spring 2017

CS115 Exam 3 Page 9 of 15

Extra Page . . .

Spring 2017

CS115 Exam 3 Page 10 of 15

Problem 5: Defining classes (20 points)
In this problem, you will define a class to represent an order for a meal. Your class
should be named MealOrder, and you should define the methods below. Hint: if you
are using the print or input functions to implement these methods, you are doing it
wrong. You do not need to write any docstrings.

__init__: Initializes a MealOrder object. Takes one parameter: a customer name. It
saves this parameter in an attribute. It also initializes two additional attributes:
one is the list of items that are part of the order; the other is the list of items from
the order that are complimentary/free. Both lists are initially empty.

add: Takes one parameter: a string representing a food. Adds this food to the order.

contains: Takes one parameter: a string representing a food. Returns True if the food
is part of the order, and False otherwise.

exchange: Takes two parameters: the original item and new item. If the original item
is part of the order, it changes it to be the new item (the original item is no longer
in the order and the new item is in the order instead) and returns True. If the
original item is not part of the order, then nothing in the order changes and the
method returns False.

to_string: Returns a string that represents the order. For example, if the order
attribute holds the value ['apple', 'pizza', 'milk'] then this method returns
the string 'apple, pizza, milk'. If the order attribute is the empty list [], this
method returns the empty string ''.

give_free: Takes one parameter: a string representing a food. If the food is in the
order, then it adds the food to the list of complimentary items. If the food is not
in the order, then it adds the food to the list of complimentary items and it also
adds the food to the order.

Start your solution on the next page...
Toward the end of the exam, there are extra pages if needed.

Spring 2017

CS115 Exam 3 Page 11 of 15

Problem 5, continued . . .

Spring 2017

CS115 Exam 3 Page 12 of 15

Problem 6: Using classes (30 points)
For this problem, you must write a complete program. This includes logic in def main(),
a call to main(), any necessary library imports, etc. You do not need to write any
docstrings.

To earn full credit, you must use the methods from the MealOrder class whenever ap-
propriate. You may assume that the class, as described in Problem 5, has already been
correctly implemented for you. Read the instructions carefully before you start coding!

Your program helps run the kitchen on a pirate ship. It should do the following:

1. Define a function called GetOrder that does the following:

• Prompts the user for order information. This information is a string that is the
pirate customer’s name (always two words), followed by an order (any number
of one-word food items). For example, DeadEye Pete’s order has 3 items:
DeadEye Pete meat rum sea-biscuit

• If the user’s string is empty, the function returns None.

• If the user’s string is too short to be a valid order, the program exits with some
error message. The shortest valid order is 3 words long, like: Redhand Jane rum.

• Otherwise, the function creates a MealOrder object using the pirate’s name
and populates the order with the foods that were listed.

• If the customer has “deadeye” (in any capitalization) as their first or last name,
then they get free 'rum' and free 'turtle-soup'.

• Every order on the pirate ship must include either 'rum' or 'grog'. If the
order lacks these, then add 'grog' to the order by default.

• Finally, the function returns the MealOrder object.

2. Define a function called GetAllOrders that does the following:

• Repeatedly calls GetOrder until it returns None; adds each of the returned
MealOrder objects into a list and then returns that list.

3. Define a function called main that does the following:

• Call GetAllOrders to get a list of all the orders.

• Using the orders, make a list of just the orders that include 'meat'.

• There is only enough meat for the first 20 orders! The remaining meat orders
need to be modified: for these, exchange 'meat' for 'slop'. For each changed
order, add complimentary 'rum' as an apology. In each case, print a summary
of these changes, including the old order and new order (using the to_string

method) and pirate name, matching the below format:

Order for Anne Bonny was changed

from: meat , grog , turtle -soup

to: slop , grog , turtle -soup , rum

Start your solution on the next page...
Toward the end of the exam, there are extra pages if needed.

Spring 2017

CS115 Exam 3 Page 13 of 15

Problem 6, continued . . .

Spring 2017

CS115 Exam 3 Page 14 of 15

Extra Pages . . .

Spring 2017

CS115 Exam 3 Page 15 of 15

Extra Pages . . .

Spring 2017

