
CS 115 Exam 3, Spring 2016, Sections 1-4

	

Your name: __

	

Rules
• You may use one handwritten 8.5 x 11” cheat sheet (front and back). This is

the only resource you may consult during this exam.

• Explain/show work if you want to receive partial credit for wrong answers.

• As long as your code is correct, you will get full credit. No points for style.

• When you write code, be sure that the indentation level of each statement is

clear.
	

	

 Your Score Max Score

Problem 1: Binary search 10

Problem 2: Selection sort 10

Problem 3: Mergesort 10

Problem 4: Recursion 20

Problem 5: Defining classes 25

Problem 6: Using classes 25

Total 100

	
	

CS 115 Exam 3, Spring 2016
Page 2 of 14

Reference code for Problems 1 and 2

The functions below are just for your reference on Problems 1 and 2. You do not
need to read them if you understand the algorithms.

def binary_search(search_list, value_to_find):

first = 0
last = len(search_list) – 1

while first <= last:

middle = (first + last) // 2
Problem 1: state the values of first, last,
and middle at this point in the code
if value_to_find == search_list[middle]:

return middle
elif value_to_find < search_list[middle]:
 last = middle – 1
else:

first = middle + 1

def selection_sort(list_to_sort):
 for i in range(len(list_to_sort) – 1):
 min_index = find_min_index(list_to_sort, i)
 list_to_sort[i], list_to_sort[min_index] =
 list_to_sort[min_index], list_to_sort[i]
 # Problem 2: Show list contents at this point

def find_min_index(L, s):
 min_index = s
 for i in range(s, len(L)):
 if L[i] < L[min_index]:
 min_index = i
 return min_index

CS 115 Exam 3, Spring 2016
Page 3 of 14

Reference code for Problem 3

The functions below are just for your reference on Problem 3. You do not need to
read them if you understand the algorithms.

def merge(L, start_index, sublist_size):
 index_left = start_index
 left_stop_index = start_index + sublist_size
 index_right = start_index + sublist_size
 right_stop_index = min(start_index + 2 * sublist_size,
 len(L))
 L_tmp = []

 while (index_left < left_stop_index and
 index_right < right_stop_index):
 if L[index_left] < L[index_right]:
 L_tmp.append(L[index_left])
 index_left += 1
 else:
 L_tmp.append(L[index_right])
 index_right += 1

 if index_left < left_stop_index:
 L_tmp.extend(L[index_left : left_stop_index])
 if index_right < right_stop_index:
 L_tmp.extend(L[index_right : right_stop_index])

 L[start_index : right_stop_index] = L_tmp

def merge_sort(L):
 chunksize = 1
 while chunksize < len(L):
 left_start_index = 0 # Start of left chunk in each pair
 while left_start_index + chunksize < len(L):
 merge(L, left_start_index, chunksize)
 left_start_index += 2 * chunksize

 chunksize *= 2

Problem 3: Show list contents at this point

CS 115 Exam 3, Spring 2016
Page 4 of 14

Problem 1: Binary search (10 points)
Consider the following sorted list:
L = ['anchor',
 'channels',
 'contrast',
 'image',
 'invert',
 'lobo',
 'menu',
 'switch']
and the binary search code on page 2. You may want to label the elements of L
with their numeric index values before proceeding.

(a) Fill out the following table tracing the call v=binary_search(L, 'invert'),
a binary search for 'invert' in this list, according to the location of comment
in the code. You should fill out one row per iteration of the loop. If there are
more rows than iterations, leave the extra rows blank. At the end, write the value
v returned by the function

Iteration Value of

first
Value of
last

Value of middle Value of L[middle]

1

2

3

4

Return value v:

(b) Fill out the following table tracing call to v=binary_search(L, 'click'), a
binary search for 'click' in this list. At the end, write the value v returned by
the function

Iteration Value of

first
Value of
last

Value of middle Value of L[middle]

1

2

3

4

Return value v:

CS 115 Exam 3, Spring 2016
Page 5 of 14

Problem 2: Selection sort (10 points)
Consider the following list:
L = ['image',
 'lobo',
 'anchor',
 'menu',
 'contrast',
 'channels',
 'invert',
 'switch']

In the diagrams below, show the contents of the list after each of the first 4
iterations of the for-loop in selection_sort. If the list does not change from
one iteration to the next, you can write “SAME” for the next iteration.

INDEX	 INITIAL

ORDER
 AFTER i=0

ITERATION
 AFTER

i=1
 AFTER

i=2
 AFTER

i=3

0 image

1 lobo

2 anchor

3 menu

4 contrast

5 channels

6 invert

7 switch
	

CS 115 Exam 3, Spring 2016
Page 6 of 14

Problem 3: Mergesort (10 points)
Consider the following list:
L = ['lobo',
 'image',
 'anchor',
 'menu',
 'switch',
 'invert',
 'contrast',
 'channels',]

In the diagrams below, show the contents of the list after each of the first 3
iterations of the outer while-loop in merge_sort. If the list does not change from
one iteration to the next, you can write “SAME” for the next iteration.

INDEX	 INITIAL

ORDER	
 AFTER

chunksize=1
ITERATION

 AFTER
chunksize=2
ITERATION

 AFTER
chunksize=4
ITERATION

0 lobo

1 image

2 anchor

3 menu

4 switch

5 invert

6 contrast

7 channels
	
	 	

CS 115 Exam 3, Spring 2016
Page 7 of 14

Problem 4a: Recursion (15 points)
Consider the following function definition:	

def fun(n, a):
 # parameter n is an integer
 # parameter a is an integer

 if n <= 0:
 return 0
 else:
 return a + fun(n-1, a)

	
A. What does the following snippet of code return?

fun(0, 3)

fun(1, 3)

B. Show the chain of recursive calls, and state what the return value is for

each call, starting with:

fun(5, 3)

C. How would you summarize what this function does in one sentence?
Don’t explain the code line-by-line. Provide a higher-level description like
“adds x and y” or “computes x factorial.”

CS 115 Exam 3, Spring 2016
Page 8 of 14

Problem 4b: Recursion (5 points)
Consider the following function definition:	

def func(s) :
 # parameter s is a string

 if len(s)<=0:
 print(“ted”)
 else:
 print(s[-1], end=””)
 func(s[:-1])

Specify the output (from the print statement) obtained with the following function
call: func(“animal”)

Output:

\

CS 115 Exam 3, Spring 2016
Page 9 of 14

Problem 5: Defining classes (25 points)
In this problem, you will define a class to represent a Cell Phone. Your class
should be named Phone, and you should define the following methods:

__init__: This method initializes a Phone object. Initialize the attributes to
store the phone’s model and service provider’s name (eg. ‘iPhone by Verizon’),
price of the phone (eg. 699) and whether it is a smart phone or a regular phone.

get_name: This method returns the phone’s model and service provider’s name

get_price: This method returns the price of the phone

is_smart: This methods returns True if the phone is a smart phone and False
if it is a regular phone.

__str__: This method returns a string with the Phone object’s attributes,
formatted as follows:

 iPhone by Verizon – a smart phone - is available for $699.
The above output is just an example: you should use the actual values in place of
values that are underlined.

__lt__: This method compares self to another Phone object.
It returns True if the self object has a lower price than another Phone object,
and False otherwise

set_price: This method sets the price of the phone, where the price is a
parameter to the method

upgrade: This method upgrades the current Phone object (self). If the phone
is a regular phone, it is upgraded to a smart phone and price is increased by
$200. If it already is a smart phone, only the price is increased by $50.

switchProvider: This method switches the name and provider of the current
object (self) to match the name and provider of another Phone object.
As an incentive for switching, price of the current phone is reduced by $200 and
the other phone is upgraded. Use the set_price and upgrade methods to
accomplish this.

[Write	 code	 in	 next	 page]	 	

CS 115 Exam 3, Spring 2016
Page 10 of 14

[WRITE YOUR PROBLEM 5 CODE HERE]

CS 115 Exam 3, Spring 2016
Page 11 of 14

[EXTRA SPACE FOR PROBLEM 5]

CS 115 Exam 3, Spring 2016
Page 12 of 14

Problem 6: Using classes (25 points)
For this problem, you must write a complete program. However, you can
assume that the Phone class from Problem 5 has already been correctly defined
for you.

To earn full credit, you must use the methods of the Phone class whenever
possible.

Read the instructions carefully before you start coding!

Your program should do the following:
1. A function called CreatePhone to do the following:

• Ask the user to enter the phone’s model and provider in one line and its
price in another line. For example:
iPhone by Verizon
699

• If the price entered is less than zero, return None
• Otherwise, check if any of words in the first line matches iPhone or

Samsung. If there is a match, the phone is a smart phone otherwise it is a
regular phone.

• Create and return a Phone object that uses the information the user
entered.	

2. A main function to do the following:

• Call CreatePhone repeatedly until the user enters a price less than zero.
• Use the results of CreatePhone to build a list of phones and print out

each phone’s information consisting of name/provider, price and whether it
is smart phone or regular phone.

• After creating the list, use the methods of the CreatePhone class to find
o Total number of regular phones. If it is greater than 5% of total

phones, print “Wow”.
o The phone that has the least price. Let’s call it minPh.
o A smart phone whose price is less than $300 (you can assume it

exists). Let’s call it smartPh.
• Now, upgrade minPh.
• minPh doesn’t have a great service provider. Switch its name and provider

to that of smartPh and give incentive for switching by reducing its price by
$200 and upgrading smartPh.

[Write	 code	 in	 next	 page]

CS 115 Exam 3, Spring 2016
Page 13 of 14

[WRITE YOUR PROBLEM 6 CODE HERE]

CS 115 Exam 3, Spring 2016
Page 14 of 14

[EXTRA SPACE FOR PROBLEM 6]

