
CS 115 Exam 3, Spring 2015, Sections 5-8 

	  

Your name:  ____________________________________________ 

	  

Rules 
• You may use one handwritten 8.5 x 11” cheat sheet (front and back).  This is 

the only resource you may consult during this exam. 
 

• Explain/show work if you want to receive partial credit for wrong answers. 
 
• As long as your code is correct, you will get full credit. No points for style. 
 
• When you write code, be sure that the indentation level of each statement is 

clear. 
	  

	  

 Your Score Max Score 

Problem 1: Binary search  15 

Problem 2: Selection sort  10 

Problem 3: Mergesort  10 

Problem 4: Recursion  15 

Problem 5: Defining classes  30 

Problem 6: Using classes  25 

Total  100 

	  
	    



CS 115 Exam 3, Spring 2014 
Page 2 of 12 

Reference code for Problems 1 and 2 
 
The functions below are just for your reference on Problems 1 and 2. You do not 
need to read them if you understand the algorithms. 

 
def binary_search(search_list, value_to_find): 

first = 0 
last = len(search_list) – 1 
 
while first <= last: 

middle = (first + last) // 2 
# Problem 1: state the values of first, last, 
# and middle at this point in the code 
if value_to_find == search_list[middle]:  

return middle 
elif value_to_find < search_list[middle]: 
     last = middle – 1 
else:  

first = middle + 1 

 
def selection_sort(list_to_sort): 
  for i in range(len(list_to_sort) – 1): 
    min_index = find_min_index(list_to_sort, i) 
    list_to_sort[i], list_to_sort[min_index] = 
               list_to_sort[min_index], list_to_sort[i] 
    # Problem 2: Show list contents at this point 
 
 
def find_min_index(L, s): 
     min_index = s 
     for i  in range(s, len(L)): 
        if L[i] < L[min_index]: 
            min_index = i 
    return min_index 
  



CS 115 Exam 3, Spring 2014 
Page 3 of 12 

Reference code for Problem 3 
 
The functions below are just for your reference on Problem 3. You do not need to 
read them if you understand the algorithms. 
 
def merge(L, start_index, sublist_size): 
    index_left = start_index 
    left_stop_index = start_index + sublist_size 
    index_right = start_index + sublist_size 
    right_stop_index = min(start_index + 2 * sublist_size, 
                           len(L)) 
    L_tmp = [] 
 
    while (index_left < left_stop_index and 
           index_right < right_stop_index): 
        if L[index_left] < L[index_right]: 
           L_tmp.append(L[index_left]) 
           index_left += 1 
        else: 
           L_tmp.append(L[index_right]) 
           index_right += 1 
 
    if index_left < left_stop_index: 
           L_tmp.extend(L[index_left : left_stop_index]) 
    if index_right < right_stop_index: 
           L_tmp.extend(L[index_right : right_stop_index]) 
 
    L[start_index : right_stop_index] = L_tmp 
 
def merge_sort(L): 
 chunksize = 1 
    while chunksize < len(L): 
  left_start_index = 0  # Start of left chunk in each pair 
  while left_start_index + chunksize < len(L): 
            merge(L, left_start_index, chunksize) 
            left_start_index += 2 * chunksize 
 
      chunksize *= 2  

# Problem 3: Show list contents at this point   



CS 115 Exam 3, Spring 2014 
Page 4 of 12 

Problem 1: Binary search (15 points) 
Consider the following sorted list: 
L = [ 'black', 
  'blue', 
  'green', 
  'orange', 
  'purple', 
  'red', 
  'white', 
  'yellow' ] 
and the binary search code on page 2. You may want to label the elements of L 
with their numeric index values before proceeding. 
 
(a) Fill out the following table tracing a binary search for 'white' in this list, 
according to the comment in the code. You should fill out one row per 
iteration of the loop.  If there are more rows than iterations, leave the extra rows 
blank. 
 
Iteration Value of 

first 
Value of 
last 

Value of middle Value of L[middle] 

1     

2     

3     

4     

5     

 
(b) Fill out the following table tracing a binary search for 'brown' in this list. 
 
Iteration Value of 

first 
Value of 
last 

Value of middle Value of L[middle] 

1     

2     

3     

4     

5     



CS 115 Exam 3, Spring 2014 
Page 5 of 12 

Problem 1 continued 
 
If we doubled the number of elements of the list L, how would you expect the 
worst-case number of binary search loop iterations to change (circle one)? 
 

A. No change. 
 

B. It would increase by one. 
 

C. It would increase by two. 
 

D. It would double. 
 

E. It would quadruple. 
 
  



CS 115 Exam 3, Spring 2014 
Page 6 of 12 

Problem 2: Selection sort (10 points) 
Consider the following list: 
L = [ 'red', 
  'orange', 
  'yellow', 
  'green', 
  'blue', 
  'purple', 
  'white', 
  'black'  ] 

 
In the diagrams below, show the contents of the list after each of the first 4 
iterations of the for-loop in selection_sort. If the list does not change from 
one iteration to the next, you can write “SAME” for the next iteration. 
 
INDEX	   INITIAL  

ORDER 
 AFTER i=0 

ITERATION 
 AFTER 

i=1 
 AFTER  

i=2 
 AFTER 

i=3 

0 red         

1 orange         

2 yellow         

3 green         

4 blue         

5 purple         

6 white         

7 black         
	  



CS 115 Exam 3, Spring 2014 
Page 7 of 12 

Problem 3: Mergesort (10 points) 
Consider the following list: 
L = [ 'red', 
  'orange', 
  'yellow', 
  'green', 
  'blue', 
  'purple', 
  'white', 
  'black'  ] 

 
In the diagrams below, show the contents of the list after each of the first 4 
iterations of the outer while-loop in merge_sort. If the list does not change from 
one iteration to the next, you can write “SAME” for the next iteration. 
 
INDEX	   INITIAL  

ORDER 
 AFTER 

chunksize=1 
ITERATION 

 AFTER 
chunksize=2 
ITERATION 

 AFTER 
chunksize=4 
ITERATION 

 

0 red        

1 orange        

2 yellow        

3 green        

4 blue        

5 purple        

6 white        

7 black        
	  
	   	  



CS 115 Exam 3, Spring 2014 
Page 8 of 12 

Problem 4: Recursion (15 points) 
Consider the following function definition:	  
	  
def rec(L, start): 
    # parameter L is a list of numbers 
    # parameter start is a number 
    if len(L) - start <= 1: 
        return True 
    if L[start] > L[start + 1]: return False 
    return rec(L, start + 1) 
 

	  
A. What does the following snippet of code print? 

L = [2] 
print(rec(L, 0)) 

 
 

B. Show the chain of recursive calls, and state what the final return value is 
for each call, starting with: 
 

L = [1, 2, 3, 4, 5] 
rec(L, 0) 

 
 
 
 
 
 
 
 
 
 
 

C. How would you summarize what this function does in just a few words, if 
you always pass a value of 0 for start in the initial call to rec?  
 
Don’t explain the code line-by-line. Provide a higher-level description like 
“adds x and y” or “computes x factorial.” 

 
  



CS 115 Exam 3, Spring 2014 
Page 9 of 12 

Problem 5: Defining classes (25 points) 
In this problem, you will define a class to represent a rectangle. 
 
If you use the input() or print() functions in your solution to this problem, 
you’re doing it wrong! 
 
Your class should be named Rectangle, and you should define the following 
methods: 
 
__init__: This method initializes a Rectangle object, given a length and 
width. You can assume that the length and the width are numbers. However, if 
the length (or width) parameter is negative, you should initialize the object’s 
length (or width) to 0. 

 
__str__: This method returns a string with the Rectangle object’s attributes, 
formatted as follows: 
  
Length = 5 and Width = 10 
This example assumes that the length and width are 5 and 10, but you should 
use the actual values. 
 
__lt__: Returns True if this Rectangle object’s area is less than another 
Rectangle object’s area, and False otherwise 
 
contains: Compares this Rectangle object and another Rectangle object. 
Returns True if this Rectangle object’s length is larger than the length of the 
other object AND this Rectangle object’s width is larger than the width of the 
other object. Otherwise, returns False. 
 
area: Returns the area of the rectangle. 
 
The last page of this exam has extra space for you to write your solution. 
	   	  



CS 115 Exam 3, Spring 2014 
Page 10 of 12 

Problem 6: Using classes (25 points) 
For this problem, you must write a complete program. However, you can 
assume that the following pieces of code will be cut and pasted into your 
program: 

• A correctly working implementation of the class described in Problem 5 
• The definition of a readfile function, similar to the ones you used in the 

labs, that takes a string (filename) as a parameter and returns a list of 
strings (the lines read from the file) 

 
To earn full credit, you must use the methods of the Rectangle class whenever 
possible. 
 
Read the instructions carefully before you start coding! 
 
Your program should do the following. 

• Ask the user how many rectangles to read. You can assume they enter a 
positive integer. 

• Open up the file rectangles.txt, and read the lengths and widths of the 
user-specified number of rectangles. You may assume that the file 
contains one valid number per line (a length, then a width, etc.) and 
contains enough numbers. 

• Print the area of the largest rectangle, in this format: 
 
Largest rectangle: 
Length = 10 and Width = 100 
Area = 1000 
 

• If we define “Rectangle A dominates Rectangle B” to mean that Rectangle 
A’s length is larger than Rectangle B’s length, AND Rectangle A’s width is 
larger than Rectangle B’s width, print the dimensions of all of the 
rectangles that are NOT dominated by any other rectangles in the list. This 
could be an example: 

 
Undominated rectangles: 
Length = 10 and Width = 100 
Length = 8 and Width = 200 
 
The last page of this exam has extra space for you to write your solution. 
  



CS 115 Exam 3, Spring 2014 
Page 11 of 12 

[EXTRA SPACE FOR PROBLEMS 5 AND 6]  



CS 115 Exam 3, Spring 2014 
Page 12 of 12 

[EXTRA SPACE FOR PROBLEMS 5 AND 6] 
 


