
CS 115 Exam 3, Spring 2014

	

Your name: __

	

Rules
• You may use one handwritten 8.5 x 11” cheat sheet (front and back). This is

the only resource you may consult during this exam.

• Explain/show work if you want to receive partial credit for wrong answers.

• As long as your code is correct, you will get full credit. No points for style.

• When you write code, be sure that the indentation level of each statement is

clear.
	

	

 Your Score Max Score

Problem 1: Binary search 10

Problem 2: Selection sort 10

Problem 3: Recursion 10

Problem 4: 2D lists 15

Problem 5: Defining classes 30

Problem 6: Using classes 25

Total 100

	
	

CS 115 Exam 3, Spring 2014
Page 2 of 10

Reference code for Problems 1 and 2

The 3 functions below are just for your reference on Problems 1 and 2. You do
not need to read them if you understand the algorithms.

binary_search()
Finds the position of an item in a list
Parameters: the list; the item to search for
Returns: the item’s position (or None)
def binary_search(search_list, value_to_find):

first = 0
last = len(search_list) – 1

while first <= last:

middle = (first + last) // 2
Problem 1: state the values of first, last,
and middle at this point in the code
if value_to_find == search_list[middle]:

return middle
elif value_to_find < search_list[middle]:
 last = middle – 1
else:

first = middle + 1
return None

def selection_sort(list_to_sort):
 for i in range(len(list_to_sort) – 1):
 min_index = find_min_index(list_to_sort, i)
 list_to_sort[i], list_to_sort[min_index] =
 list_to_sort[min_index], list_to_sort[i]
 # Problem 2: Show list contents at this point

def find_min_index(L, s):
 min_index = s
 for i in range(s, len(L)):
 if L[i] < L[min_index]:
 min_index = i
 return min_index

CS 115 Exam 3, Spring 2014
Page 3 of 10

Problem 1: Binary search (10 points)
Consider the following sorted list:
L = ['grape',

'jicama',
'kumquat',
'lychee',
'mango',
'orange',
'potato',
'quince',
'raspberry',
'spinach']

and the binary search code on page 2. You may want to label the elements of L
with their numeric index values before proceeding.

(a) Fill out the following table tracing a binary search for 'grape' in this list,
according to the comment in the code. You should fill out one row per
iteration of the loop. If there are more rows than iterations, leave the extra rows
blank.

Iteration Value of

first
Value of
last

Value of middle Value of L[middle]

1

2

3

4

5

(b) Fill out the following table tracing a binary search for 'taco' in this list.

Iteration Value of

first
Value of
last

Value of middle Value of L[middle]

1

2

3

4

5

CS 115 Exam 3, Spring 2014
Page 4 of 10

Problem 2: Selection sort (10 points)
Consider the following list:
L = ['it',

'is',
'way',
'too',
'early',
'for',
'a',
'test']

In the diagrams below, show the contents of the list after each of the first 4
iterations of the for-loop in selection_sort. If the list does not change from
one iteration to the next, you can write “SAME” for the next iteration.

INDEX	 INITIAL

ORDER
 AFTER i=0

ITERATION
 AFTER

i=1
 AFTER

i=2
 AFTER

i=3

0 it

1 is

2 way

3 too

4 early

5 for

6 a

7 test
	
	 	

CS 115 Exam 3, Spring 2014
Page 5 of 10

Problem 3: Recursion (10 points)

Consider the following function definition:	
	
def magic(s1): # parameter is a string or list
 if len(s1) == 0:
 return 0
 if s1[0].lower() == 's':
 return 1 + magic(s1[1:])
 return magic(s1[1:])

	
A. What does the following function call return?

L = []
magic(L)

B. Show the chain of recursive calls, and state what the final return value is
for the call:

magic('chess')

C. How would you summarize what this function does in just a few words?

Don’t explain the code line-by-line. Provide a higher-level description like
“adds x and y” or “computes x factorial.”

	 	
	
	 	

CS 115 Exam 3, Spring 2014
Page 6 of 10

Problem 4: 2D lists (15 points)

For this problem, assume that L is a 2D list and that every element of L is the
same length (i.e., L contains the same number of rows and columns).

(a) Finish this function definition, as specified:
	
def column_check(L, num):
 # Assumes that L is a 2D list of numbers.
 # Returns True if each column of L adds up to a
 # value greater than or equal to num.
 # Returns False if one or more columns of L add up
 # to a value less than num.
	

	
	
	

	 	
	
	
	
	
(b) Finish this function definition, as specified:
	
def count_X(L):
 # Returns the number of times 'X' or 'x' appears
 # as an element of the 2D list L.

	
	

	

CS 115 Exam 3, Spring 2014
Page 7 of 10

Problem 5: Creating classes (30 points)
In this problem, you will define a class to represent a dieter’s daily food intake
and exercise.

If you use the input() or print() functions in your solution to this problem,
you’re doing it wrong!

Your class should be named Dieter, and you should define the following
methods:

__init__: This method initializes a Dieter object.

• Parameter: the dieter’s target number of calories for the day
• Initializes: the dieter’s target number of calories and the number of calories

the dieter has consumed.

__str__: This method returns a string with the dieter’s target number of
calories and the number they have left to consume, formatted exactly as follows:

Target: 1400; Consumed: 1200; Remaining: 200
or
Target: 1400; Consumed: 1500; Excess: 100

reset: Resets the number of calories to 0. Doesn’t return anything.

add_meal: Takes the number of calories in a meal as a parameter and adds it
to the number consumed. Doesn’t return anything.

add_exercise: Takes the calories burned as a parameter and subtracts it from
the number consumed. Doesn’t return anything.
	
remaining: Returns the number of calories the dieter has left to consume; can
be negative if the dieter has consumed more calories than the target amount.

The last page of this exam has extra space for you to write your solution.

	 	

CS 115 Exam 3, Spring 2014
Page 8 of 10

Problem 6: Using classes (25 points)
For this problem, you must write a complete program. However, you can
assume that the Dieter class from Problem 5 has already been correctly
defined for you.

To earn full credit, you must use the methods of the Dieter class whenever
possible.

Read the instructions carefully before you start coding!

Your program should do the following. You can assume that the user enters non-
negative integer inputs.

• Ask the user how many dieters live in their household.
• Prompt the user for each dieter’s calorie target, and create a Dieter object

for each person.
• Ask the user how many meals they ate today. You can assume that

everyone in the household ate exactly the same things.
• Prompt the user for the number of calories in each meal.
• Ask the user how many calories they burned today.
• Print an updated report for each dieter. For example:

Dieter 1:
Target: 1400; Consumed: 1200; Remaining: 200

Dieter 2:
Target: 1500; Consumed: 1200; Remaining: 300

The last page of this exam has extra space for you to write your solution.

CS 115 Exam 3, Spring 2014
Page 9 of 10

[EXTRA SPACE FOR PROBLEMS 5 AND 6]

CS 115 Exam 3, Spring 2014
Page 10 of 10

[EXTRA SPACE FOR PROBLEMS 5 AND 6]

