
CS 115 Exam 3, Spring 2015, Sections 1-4

	

Your name: __

	

Rules
• You may use one handwritten 8.5 x 11” cheat sheet (front and back). This is

the only resource you may consult during this exam.

• Explain/show work if you want to receive partial credit for wrong answers.

• As long as your code is correct, you will get full credit. No points for style.

• When you write code, be sure that the indentation level of each statement is

clear.
	

	

 Your Score Max Score

Problem 1: Binary search 10

Problem 2: Selection sort 15

Problem 3: Mergesort 10

Problem 4: Recursion 15

Problem 5: Defining classes 25

Problem 6: Using classes 25

Total 100

	

	

CS 115 Exam 3, Spring 2014
Page 2 of 12

Reference code for Problems 1 and 2

The functions below are just for your reference on Problems 1 and 2. You do not
need to read them if you understand the algorithms.

def binary_search(search_list, value_to_find):

first = 0
last = len(search_list) – 1

while first <= last:

middle = (first + last) // 2
Problem 1: state the values of first, last,
and middle at this point in the code
if value_to_find == search_list[middle]:

return middle
elif value_to_find < search_list[middle]:
 last = middle – 1
else:

first = middle + 1

def selection_sort(list_to_sort):
 for i in range(len(list_to_sort) – 1):
 min_index = find_min_index(list_to_sort, i)
 list_to_sort[i], list_to_sort[min_index] =
 list_to_sort[min_index], list_to_sort[i]
 # Problem 2: Show list contents at this point

def find_min_index(L, s):
 min_index = s
 for i in range(s, len(L)):
 if L[i] < L[min_index]:
 min_index = i
 return min_index

CS 115 Exam 3, Spring 2014
Page 3 of 12

Reference code for Problem 3

The functions below are just for your reference on Problem 3. You do not need to
read them if you understand the algorithms.

def merge(L, start_index, sublist_size):
 index_left = start_index
 left_stop_index = start_index + sublist_size
 index_right = start_index + sublist_size
 right_stop_index = min(start_index + 2 * sublist_size,
 len(L))
 L_tmp = []

 while (index_left < left_stop_index and
 index_right < right_stop_index):
 if L[index_left] < L[index_right]:
 L_tmp.append(L[index_left])
 index_left += 1
 else:
 L_tmp.append(L[index_right])
 index_right += 1

 if index_left < left_stop_index:
 L_tmp.extend(L[index_left : left_stop_index])
 if index_right < right_stop_index:
 L_tmp.extend(L[index_right : right_stop_index])

 L[start_index : right_stop_index] = L_tmp

def merge_sort(L):
 chunksize = 1
 while chunksize < len(L):
 left_start_index = 0 # Start of left chunk in each pair
 while left_start_index + chunksize < len(L):
 merge(L, left_start_index, chunksize)
 left_start_index += 2 * chunksize

 chunksize *= 2

Problem 3: Show list contents at this point

CS 115 Exam 3, Spring 2014
Page 4 of 12

Problem 1: Binary search (15 points)
Consider the following sorted list:
L = ['Black Widow',
 'Captain America',
 'Hawkeye',
 'Hulk',
 'Iron Man',
 'Loki',
 'Quicksilver',
 'Thor']
and the binary search code on page 2. You may want to label the elements of L
with their numeric index values before proceeding.

(a) Fill out the following table tracing a binary search for 'Hawkeye' in this list,
according to the comment in the code. You should fill out one row per
iteration of the loop. If there are more rows than iterations, leave the extra rows
blank.

Iteration Value of

first
Value of
last

Value of middle Value of L[middle]

1

2

3

4

5

(b) Fill out the following table tracing a binary search for 'Scarlet Witch' in
this list.

Iteration Value of

first
Value of
last

Value of middle Value of L[middle]

1

2

3

4

5

CS 115 Exam 3, Spring 2014
Page 5 of 12

Problem 2: Selection sort (10 points)
Consider the following list:
L = ['Iron Man',
 'Captain America',
 'Hulk',
 'Thor',
 'Black Widow',
 'Hawkeye',
 'Loki',
 'Quicksilver']

In the diagrams below, show the contents of the list after each of the first 4
iterations of the for-loop in selection_sort. If the list does not change from
one iteration to the next, you can write “SAME” for the next iteration.

INDEX	
 INITIAL

ORDER
 AFTER i=0

ITERATION
 AFTER

i=1
 AFTER

i=2
 AFTER

i=3

0 Iron Man

1 Capt.
America

2 Hulk

3 Thor

4 Black
Widow

5 Hawkeye

6 Loki

7 Quicksilver
	

CS 115 Exam 3, Spring 2014
Page 6 of 12

Problem 2 continued

If we doubled the number of elements of the list L, how would you expect the
number of “less than” comparisons of list elements made by the two selection
sort functions to change (circle one)?

A. No change.

B. It would increase by one.

C. It would increase by two.

D. It would double.

E. It would quadruple.

CS 115 Exam 3, Spring 2014
Page 7 of 12

Problem 3: Mergesort (10 points)
Consider the following list:
L = ['Iron Man',
 'Captain America',
 'Hulk',
 'Thor',
 'Black Widow',
 'Hawkeye',
 'Loki',
 'Quicksilver']

In the diagrams below, show the contents of the list after each of the first 4
iterations of the outer while-loop in merge_sort. If the list does not change from
one iteration to the next, you can write “SAME” for the next iteration.

INDEX	
 INITIAL

ORDER
 AFTER

chunksize=1
ITERATION

 AFTER
chunksize=2
ITERATION

 AFTER
chunksize=4
ITERATION

0 Iron Man

1 Capt.
America

2 Hulk

3 Thor

4 Black
Widow

5 Hawkeye

6 Loki

7 Quicksilver
	

	
 	

CS 115 Exam 3, Spring 2014
Page 8 of 12

Problem 4: Recursion (15 points)
Consider the following function definition:	

	

def rec(L, start):
 # parameter L is a list of at least one number
 # parameter start is a number
 if len(L) - start == 1:
 return L[start]
 x = rec(L, start + 1)
 if x > L[start]:
 return x
 return L[start]

	

A. What does the following snippet of code print?

L = [2]
print(rec(L, 0))

B. Show the chain of recursive calls, and state what the final return value is
for each call, starting with:

L = [1, 4, 3, 5, 2]
rec(L, 0)

C. How would you summarize what this function does in just a few words, if
you always pass a value of 0 for start in the initial call to rec?

Don’t explain the code line-by-line. Provide a higher-level description like
“adds x and y” or “computes x factorial.”

CS 115 Exam 3, Spring 2014
Page 9 of 12

Problem 5: Defining classes (25 points)
In this problem, you will define a class to represent a person.

If you use the input() or print() functions in your solution to this problem,
you’re doing it wrong!

Your class should be named Person, and you should define the following
methods:

__init__: This method initializes a Person object, given a first name, last
name, and age. You can assume that the provided age is a valid number.
However, if it is negative, use 0 instead when you initialize the object.

__str__: This method returns a string with the Person object’s attributes,
formatted as follows:

John Smith (age 53)
This example assumes that the first name is John, the last name is Smith, and
age is 53, but you should use the object’s actual values.

__lt__: Returns True if this Person object is younger (smaller age) than
another Person object, and False otherwise

alpha_after: Compares this Person object and another Person object.
Returns True if this Person object’s first name comes alphabetically after the
other Person object’s first name AND this Person object’s last name comes
alphabetically after the other Person’s last name. Otherwise, returns False.

The last page of this exam has extra space for you to write your solution.
	
 	

CS 115 Exam 3, Spring 2014
Page 10 of 12

Problem 6: Using classes (25 points)
For this problem, you must write a complete program. However, you can
assume that the following pieces of code will be cut and pasted into your
program:

• A correctly working implementation of the class described in Problem 5
• The definition of a readfile function, similar to the ones you used in the

labs, that takes a string (filename) as a parameter and returns a list of
strings (the lines read from the file)

To earn full credit, you must use the methods of the Person class whenever
possible.

Read the instructions carefully before you start coding!

Your program should do the following.

• Ask the user how many people to read. You can assume they enter a
positive integer.

• Open up the file people.txt, and read the first name, last name, and age of
the user-specified number of people. You may assume that the lines of the
file alternate between two-word names (e.g. John Smith) and ages.

• Print the oldest person (you can choose who to print in the event of a tie),
in this format:

Oldest person:
Mary Jones (age 82)

• Print the names of all of the people whose first AND last names are
alphabetically after at least one other person, and print the name of
exactly one such person. For example:

Shelly Smith comes after Mary Jones
John Smith comes after Beyonce Knowles

...but note that we’re not printing “Shelly Smith comes after Beyonce Knowles” –
it would be fine to print either this or the Mary Jones line, but not both.

The last page of this exam has extra space for you to write your solution.

CS 115 Exam 3, Spring 2014
Page 11 of 12

[EXTRA SPACE FOR PROBLEMS 5 AND 6]

CS 115 Exam 3, Spring 2014
Page 12 of 12

[EXTRA SPACE FOR PROBLEMS 5 AND 6]

